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Abstract with the remaining digits appearing as distractors. In varied
e , mapping paradigms, targets on one trial may be distractors on
Itis widely held that there is a d“;“f;”';‘;\“::‘: “‘:‘r";’:““"jsgg another trial (e.g., the targets that the subject has to search for
auiomalic cognitive processing. in rese : on a particular trial have been selected in the experiment by
;uﬂgﬂm;‘h; ::xl:cd?:x:f ?srf:::;nafl;orfe;ms;bﬁ§ randomly sampling four of the ten digits, with the non-selected
cating a shift, with practice, from serial, astertional, controlled items being potential distractors; since a new sample is taken
processing to parallel, automatic processing, while detection every trial, individual digits change roles as targets/distractors
performance in varied mapping paradigms is taken to indicate over trials). ) . 4 o
that processing remains under anentional congol. This paper A reliable finding from varied mapping studies is :
proposes a prioriy learning mechanism to model the effects of that reaction time increases roughly linearly with mem- i
practice and the development of automaticity, in visual search ory set size ([Kristofferson 1972a)).  Consistent map- :
tasks. A conne;uomstsunulau?n model fu-n.ple;lnems t::u learn- ping studies have found that, with practice, search !
ing algorithm. Five prominent featres of visual search practice becomes much faster and memory set size has less ]
effects u:;unulaled. Theseare: 1) m_cor;ﬂim;:m?ppmgfmkcsj impact on reaction times than in the varied map- :
practce reduces processing time, particularly the slope of reac : it : 1963, Nei Novick & 1963 .
tion times as a function of the number of comparisons; 2) in ping condition ([Neisser 1963, Neisser, Novick & Lazar , i
varied mapping tasks, there is no change in the slope of the Kristofferson 1972b, Schneider & Shiffrin 1977]). :
reaction time function; 3) both the consistent and varied effects These findings have led to the hypothesis that, in varied map- s
can occur concurrently; 4) reversing the target and distractor ping, each item in the display is serially compared with items ¢
sets produces strong interference effects; and 5) the benefits of in the memory set, with each comparison taking on the order H
pracuce are a function of the degree of consistency. of 50 msec. In contrast, practice in the consistent mapping !
condition leads to a switch from serial, attentional, to parallel, .
: automatic processing ([Shiffrin 1988]). i
Introduction Our focus in this paper is on priority learning, which we 3

Human performance changes dramatically as practice devel-
ops, leading to improved performance and a decrease in de-
mands made on attentive resources. Many frameworks have
discussed this transition (see [Shiffrin & Schneider 1977]).
However, there is no generally accepted model of how per-
formance changes with practice. Moreover, although theo-
retical frameworks have been proposed, they have generally
not provided a detailed computational account of hypothesized
processing.

In this paper, we present a computational model of practice
effects in visual search tasks (see discussion below), which
have played an important role in research on attentional pro-
cesses. The term attention is generally used to indicate aspects
of human cognitive processing that the subject can control,
and that involve capacity or resource limitauions. Attentional
processing is taken to be a slow, serial activity, with the focus
of attention limited to being one thing at a time. However,
with practice in consistent Lasks, automatic processes develop
allowing parallel processing that is faster and not as limited by
attentional resources' .

The distinction between controlled and automatic processes
has been the focus of much research in the field, particularly
in visual search tasks. In such tasks, stimuli are presented
visually to the subject, who is required to detect the presence
of members of a set of target stimuli (the memory ser). Non-
warget sumuli are termed distractors. In consistent mapping
paradigms, a Wrget stimulus will never appear as a distractor
on any tnal - for example, the subject has to search the display
for the memory sctdigits (e.g., the digits {84 § 2}) on all trials,

*This work was supported in part by ONR contracts NO0O14-87K 0397
and N00014-86-K-0678 and ARI contract MDA903-89.K-017410 the second
aythor.

1See [Shiffnn 1988] for an excellent review of rescarch on aenuon.
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propose as a mechanism that models the effects of practice, and
the development of automaticity, in visual search tasks. We
teview specific experimental results that have been obtained in
studies involving visual search tasks, and present simulations
indicating how priority leaming can provide an account of the
observed practice and automaticity effects.

An architecture for attentional effects in visual
search tasks

This section describes briefly the larger architecture for at-
tentional processing within which the prionity learning mode!
is embedded. The modular architecture (Figure 1) combines
standard connectionist components such as connectionist units
in a multi-layer organization (see (Rumelihart et al. 1986], for
example) with control elements that modulate the flow of
information between modules. The conurol involves a gat-
ing unit (Unit 1 in the figure) that provides a scalar mul-
tiplication of a module’s output vector. The gating unit
receives input from priority units within the module, and
from an extermal attentional control that coordinates activ-
ity between modules. This architecture parallels certain
aspects of neurophysiology, and is detailed elsewhere (see
[Schneider & Detweiler 1987,  Shedden & Schneider 1991,
Schneider & Oliver, forthcoming)).

Figure 1 illustrates the overall model of a visual search task.
“Visual” modules V1 and V2 represent areas of cortical visual
processing, each corresponding to the small area of the visual
field in which one stimulus appears. Each module consicts
of an input layer (labeled / in the figure) and an output laver
(lcbeled O). The input layer projects via weighted connections
10 the output layer, which projects to a module at the next
level of processing (Level 2). Each module also has a layer
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Figure 1: Architecture of the model. Stmuli from earlier stages
of visual processing enter the input layers / of visual modules V1 and
V2 and propagate forward to the output layers O (Level 1 of pro-
cessing). The output layer vectors are sequentially ransmitted (under
exiernal attentonal control) 1o a comparator module (not shown),
where they are serially compared with memory set items. Stimuli
in the input layers of V1 and V2 also evoke a priority level activa-
tion over the layer of priority units P, which also receive feedback
from the comparator module. The priority levels provide the basis
for a ransition from serial ransmission and comparison of stimuli
(aueruive processing) o parallel, awomatic processing (see text).

of priority units (labeled P), which receives input from the
module’s input layer.

Unit 1 within each module “gates” the forward propagation
of activation from the output layer. When this gating is in ef-
fect, no vector transmission from the outputlayer of the module
takes place, although the activation of the output layer is un-
changed (e.g., as in the inhibition of the axon initial segment,
but not the soma, of a neuron - see [Douglas & Martin 1990}).
However, the external attentional control can (by exciting Unit
2, which inhibits Unit 1) inhibit Unit 1, which will release
Unit 1's gating effect and lead to onward transmission of the
vector in the output layer of that module. The attentional con-
rrol thus provides for the sequential transmission of vectors
from the visual modules, which models the shifting of atten-
tion from one area of the visual field to another, i.e., from one
displayed stimulus to another, in the visual search task (see
[Detweiler & Schneider, forthcoming)).

When the output layer vector of each module propagates
forward in tum, it is compared senally with memory set items

In a “comparator” module (not shown in Figure 1)?, If a visual
stimulus matches a memory set item, then the output vector
of that visual module also propagates forward 10 a “motor”
module at Level 2 | initiating the motor sequence necessary 1o
produce the detecuon response.

This paper describes the priority learning aspects of the
model, whereby lecarning alters the activity of the pnonty units

1This companson can be performed by summing the transmitted vector
«1th ~ach memory sct 1i2m into 8 layer of connecucmstunits The sum of the
squared scuvauon of each unit in the receiving layer then provides a measure
of the correlauon, or surulariry between the two vectors. If acuvauon s above
a cnenon level, there 15 & maich of the sumulus with a memory set item,
otherwise no match. See [Shedden & Schneider 1991} for detauls.
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and allows automatic transmission of the outputin the absence
of attentional control.

Priority learning

A sensory system that includes paraliel input at early stages
with sertal processing at later stages would benefit from
a filtering system that prioritizes inputs for limited se-
rial processing. Early visual input processing is parallel
([Ericksen & Spencer 1969]). Witha priority fillening scheme,
a serial processing system can processes stimuli in their or-
der of importance following the rating of sumuli based on a
parallel low level interpretation of sumuli ((Norman 1969)).
This allows the most important stimulus to be processed
first. Humans appear to have such a prionty filtering scheme
([Yantis & Johnson 1990]).

QOur computational implementation of priority filtering is in
the form of a connectionist network that associatively maps
each input vector 10 a scalar priority. For example, in visual
search, each letter would evoke a unique input vector of length
50 in a module (see Figure 1). Each input vector would asso-
ciatively evoke a scalar value specifying the priority (on a scale
of 0 through 10, represented by activation of the priority units)
for that input vector. Input vectors evoking a high priority
are transmitted to higher levels whereas low prionty vectors
are gated off, blocking the transmission. Many modules in
the visual system can receive input simultaneously, with the
respective input vectors each evoking a priority level, in par-
allel. If only one module contains a high priority target, it will
"pop out” of the display ([Triesman 1988]). This occurs by
having the priority units inhibit the gating units, thus allowing
the output vector to be transmitted automatically 10 the next
level of processing?.

The priority units must be trained to associate input vec-
tors 1o the appropriate priority levels. This is accom-
plished in the current model via feedback from the com-
parator stage. We assume that processing at the comparni-
son stage results in higher output for more important stimuli
([Schneider & Detweiler 1987]). A scalar transform of this
output signal is fed back to all modules at the earlier stage.
This becomes the target level for the prionty units of the trans-
mitting module. Shortly after a vector is ransmilled out of &
module under External Attentional Control, the priority units
are re-trained to approximate the feedback signal via associa-
tive learning.

The net resuit of pnonty leaming is that if the stimulus
in a visual module tums out to be a wrget, then the prionity
learning network is re-trained to evoke a3 kigher prienty than
was currenudy evoked: if the sumulus turns out to be a distractor,
then the prionty leaming network 1s re-trained toevoke a lower
prionty than was currenuy evoked.

The predicted effects of the learming of pnonues are as fol-
lows. In a consistent mapping task over ume, sumuli that
enter modules V1 and V2 and correspond (o targets will evoke
increasingly high pnonues in those modules, while sumuli

IFigure | shows the exciatory connecuons from the pnomtv units o Unu 2,
which nhibits Unut 1. Lf the pnonty level evoked by a sumulus 1s above some
threshold, Unit 2 caninhibit Unit | sufficiendy o reiease s gaung etfecton the
output layer, resuiung 1n an “sutomauc” transmission from the visual moaale
10 the motor module. [n this case, the motor response 1s tnggered without
any sequenual scanning of modules under attentional control. or companson
of the sumulus in 2 module with memory set items. For simphicity, we have
omitled discussion of control signals from the pnonty units to the extenal
auenuonal control. These are descnbed in [Schneider & Detwerier 1987), and
provide 8 mechanism for extemal attenuonal control 1o entirely 1gnore a very
low pnonty sumulus, i.e., 1o fad 10 intuate transmission from that module 10
the comparstor.




corresponding to distractors will have increasingly low priori-
ties. Once the prionities evoked by a target stmulus in modules
V1 or V2 have crossed threshold level r, the presentation of
that stimulus in either of those modules will lead t0 automatic
transmission from the output layer of that medule to the motor
module, without sequential scanning of the modules, or serial
comparison of their “contents” with memory set items. For
distractor stimuli, low evoked priorities result in their being
ignored by the attentional control. Thus, serial, attentional
comparison is supplanted by parallel, automatic processing,
resulting in reduced reaction times for the detection of targets,
and in the independence of reaction time from memory set size.
In a varied mapping task, however, since a particular stim-
ulus is sometimes a target and sometimes a distractor, there
is no gradual increase/decrease of priorities for different sets
of sumuli. Instead, the prionity levels of sumuli will tend to
fluctuate around the default priority level. That is, the evoked
priority levels of presented stimuli do not cross threshold, and
so there is no automatic over-ride of attentional processing,
and no “ignoring” of stimuli. The production of the detection
response has to continue to be through serial attentional com-
parison. Accordingly, there will be no decrease in reaction
times, or in their linear relationship with memory set size®.

Implementation of priority learning

We ran simulations of the priority learning component of the
architecture outlined above, using a single two-layer connec-
tionist network incorporating the input layer and priority layer
of one visual module shown in Figure 1. Our aim was to
examine whether a priority learning scheme would provide a
basis for the practice effects observed in consistent mapping
and varied mapping paradigms.

Stimuli entering the network’s input layer (/nput, corre-
sponding to layer / in Figure 1) are vectors of length 50, with
each element being in the range £1.0; that is, the input layer
consists of 5Q units. The priority layer (Prioriry, correspond-
ing to layer P in Figure 1) consists of 10 units’. A stimulus in
Input is transmitted in feed-forward fashion to Priority. Net
input to each priority unit is computed as the weighted sum
of inputs from all the input units. The priority level evoked
by a stimulus is computed by a simple count of the number of
priority units in Priority that have positive net input. Thus if
all ten priority units have negative net input, the priority ievel
is computed as 0; if # priority units have positive net input, the
priority level is a, with the highest possible priority being 10.
Bias to the priority units is distributed linearly over the range
+0.40, 50 that five priority units have a positive bias, and five
a negative bias. In the absence of input to the priority units
from /nput, therefore, the evoked prionty level has the default
value of S.

When asumulus is presented to the network, a prionity vector
is evoked at the priority layer. The network is then re-trained
to evoke, for the current sumulus, either a higher priority level
than currently evoked (if the current sumulus is designated
a target), or a lower pnority level than currendy evoked (if
the current stimulus is designated a distractor)®. This will be
referred to as the incrementing and decremeniing of priority,
respectvely. The simulauons described here have employed

‘Akinson & Juola ([Atkinson & Juola 1973}) have presented & similar
modei of recency leamuing, in which sumui of intermediate famibanty require
auenuonal scanning while novel sumuli do not

3 Although our symulauons have used a layer of 10 prionty units, it should
be possible 10 achieve the same effecis with a single pnonty unit

8The higher or lower pnonty levels correspond to modulation of prionty
layer acuvauons by feedback from the comparator module.

the Widrow-Hoff learning algonthm ([Widrow & Hoff 1960]).
One epoch consisted of presentation of the enure set of sumuli,
with appropriate incrementing/decrementing of priority after
presentation of each sumulus.

Simulations of priority learning

Simulation 1: Consistent mapping. In consistent map-
ping studies with human subjects, the rate of search has been
shown 10 become much faster with practice ([Neisser 1963]).
Studies with well-practiced human subjects have exhib-
ited reaction times that varied relatively little with mem-
ory set size ([Schneider & Shiffnin 1977, Experiment 2],
[Neisser, Novick & Lazar 1963]).

In our simulations of consistent mapping, the training set
for a module consisted of 16 random vectors. which were
partitioned into two disjoint sets of 8 stimuli each, one set being
designated targets, and the other distractors. During prionty
learning, the evoked priorities were consistently incremented
or decremented for the two sets of stimuli respectively.

The results of the consistent mapping simulations are shown
in Figure 2a. The slopes show the evoked mean priority level
of targets and distractors, as a function of training (epochs).
With increased epochs of training, target stimuli come to evoke
increasingly high priorites, while distractor stimuli have in-
creasingly low priorities. As discussed in the secuon on pri-
ority learning, a visual module in which a stimulus evokes a
prionty level of greater than some threshold ~ will automat-
cally transmit the vector in its output layer.

Figure 2b shows reaction times for targets in consistent map-
ping experiments with human subjects, who were trained over
a period of 36 days ([Kristofferson 1972b]). Memory set sizes
of one, two and four were used. For each set size, there was a
decrease in reaction ime over the training period, which is in-
terpreted as being largely due t.. speeding up of non-attentional
components such as the motor response component of the task,
which is also the case in varied mapping tasks ({Shiffrin 1988,
page 748]). Figure 2b also illustrates the non-linear sct size
functions characteristic of consistent mapping.

The priority levels of targets in our simulations of consis-
tent mapping give rise to similar reaction times. On each
epoch, search time S for a target was simulated as follows.
If the prionty level evoked by the stimulus was greater than
a threshold ievel r, then the sumuius would evoke autumatic
detection, taking “‘automatic response time™ A. If the prnionity
level was below threshold. then the target would have to be
compared senally with memory set items, with each such com-
panson taking a constant “comparison time”™ C. We assumed
non-terminaung search, so that the number of comparisons re-
quured is equal to memory set size m. Towl reaction time for
a target was therefore calculated as (i) a base time B, repre-
senung non-attentonal factors, plus (i) search time S, which
was cither (3) automatic detecuon ume A (if the prionity level
was greater than r), or (b) conuolled response time equal to
companson time C times memory set size m (if the prnionty
level was less than r).

The ume per companson C was taken o be S0 msec, an i
the ume for an automauc response, 40 msec. We used pnonty
threshold = = 8.0. We used a base reaction ume 5 of 290 msex,
which decayed to about 230 msec over 200 epochs of raining,
simulaung the speed-up of non-attentional components of re-
acuon tmes’. Figure 2¢ shows the simulated reaction times,

"These figures were denved from the human subiect data by subtracung
the ume for one atentional companson (54 msec) from toul reaction ume for
memory set size one (a) at Days 1-6 (approtuimately 340 msec), and (b) at
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Figure 2: Priority learning simulation results. (a) Prionty levels in consistent mapping simulaton (Simulauon 1). (b) Human subject
reaction tmes for target stimuli in a consistent mapping task, after M. Fasiofferson, “When Item Recognition and Visual Search Functions are
Similar”, Perception and Psychophysics, 12, p.381. (c) Simulated reaction umes for targets, averaged over five consisteni mapping simulation
runs (Simulanon 1). (d) Priority levels in vaned mapping simulaton (Simulation 2). (e) Human subject reacton times for all sumuli in a varied
mapping task, after M. Kristofferson, “Effects of Practice on Character Classificauon™, Canadian Journal of Psychology 26, p.57. (f) Simulated
reaction times for all stimuli, in vaned mapping simulation (Simulaton 2). (g) Prionty levels with reversal of targets;distractors in consistent
mapping (Simulation 4). (h) Detection accuracy with reversal of targets/distractors in consistent mapping (Simulauon 4). (i) Priority levels of
sumuli with varying degrees of consistency (Simulaton 5).
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for memory set sizes of one, two and four. Levels of practice
are shown in terms of average reaction time over blocks of
50 epochs, corresponding to the average reaction times over
blocks of days in Figure 2b.

As in the human data (Figure 2b), the simulation results
(Figure 2c) show a downward shift (with practice) of reaction
times for each memory set size; this is the combined result of
decreasing base response times as well as of developing auto-
matic responses. Moreover, the reaction times for different set
sizes at a particular level of practice exhibit the non-linearity
expected in a consistent mapping task. Overall, the simuiation

results appear to model the human data quite well®.

Simulation 2: Varied mapping. Varied mapping studies
with human subjects have found that search time continues
10 be a linear function of memory set size, even after practice
([Kristofferson 1972a}). In our simulations of varied mapping,
the training set for a module consisted of 16 random vectors.
The priority level for each stimulus was incremented or decre-
mented at random, modeling the effect of stimuli not being
treated consistently either as targets or distractors.

Results from the varied mapping simulatons are shown in
Figure 2d, which plots the mean evoked priority of all stimuli.
The mean priority levels fluctuate around the “default” priority
level of 5, even with extended practice, as a result of the non-
consistent treatment of stimuli. Note that in the simulation
results shown, there is an initial random increase in mean
priority; in other simulations, there was an initial decrease in
priorities. But in all cases, the mean prionity settled around the
value of 5.

Human reaction times from a varied mapping task
((Kristofferson 1972a]) are shown in Figure 2e (all sumuli),
which shows that detection umes remain linear with memory
set size, even with extended practice. The priority levels of
stimuli in our vaned mapping simulation give rise to similar
reaction tumes, calculated in the same way as for consistent
mapping (Figure 2f). As in the human subject data, practice
does not change the linearity of set size functions. The reason
for this is that, since few stimuli achieve threshold priority
levels, serial comparison remains the only basis for target de-
tection. Automatic detection does not develop, and therefore
search functions remain linear with set size. Thus our simula-
tion provides a good match with the observed varied mapping

results’.

Simulation 3: Consistent & Varied mapping combined.
Schneider and Fisk conducted an experiment in which subjects
were asked to cauTy out a consistent mapping lask and a var-
ied mapping task simultaneously {{Schneider & Fisk 1982a}).
The findings were that both tasks could be accomplished si-
multaneously about as well as when each task was camed out
alone.

Days 31.36 (approximately 280 msec). This decrease in base ume, from 290
msec to 230 msec, was aed by an exponenual funcuon with constant 0.998S5,
as a first approximauon.

$Our model predicts that reacuon ume funcuons will become perfectly flat
at some pounit This does occur n our sumuiauons, by approx. 300 epochs of
traung

9Note that the behavior of the slopes of simulated reacuon umes fit the
human data quite well, which was the major focus of interest in this paper.
By contrast, the changes in intercept (i €., base reaction ume) 1n sumulauons
do not fit the human daa well. This 1s because simulauon of the base ume
pracuce effect did not include an asymptote etfect and hence overesumated
the decrease in base ume. With humans, decreases in base ume seem to
asymptote at approximately 200 msec. Adding an addiuonal parameter to the
model would aow a good fit of hoth the constant slope and declining intercept
effectin vaned mapping.
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We ran simulations in which 32 stimuli were partitioned into
two sets of 16 stimuli each. One set of 16 stimuli represented
a consistent mapping task: 8 of the stimuli were treated as
targets, and the other 8 as distractors. The other set of 16
stimuli represented a varied mapping lask, and the stimuli
were treated randomly as targets and distractors. One epoch
involved presentation of all 32 stimuli, and represented the
simultaneous performance of both the consistent and varied
mapping tasks on different sets of sumuli.

The priority levels of consistently mapped stimuli (which
were consistently either targets or distractors) separated as in
the consistent mapping task alone. The average evoked prior-
ity of the varied mapping stimuli remained close to the default
priority level of 5, as in the varied mapping task alone. Thus
the priority levels of both the consistent and varied mapping
stimuli were similar to thoss in each of the tasks performed
independently, indicating that practice effects in the combined
consistent and varied mapping task can be modeled in terms
of priority learning under the same assumptions as for the
independent tasks, in conformity with the findings of the ex-
periment described above.

Simulation 4: Target/distractor reversal in consistent map-
ping. Implicit in the priority learning scheme we have pre-
sented is the hypothesis that, in consistent mapping, with prac-
tice, target stimuli come (o “‘attract attention” to themselves.
Shiffrin and Schneider empirically verified the prediction that
if the set relationships are reversed after the priorities have been
established, subjects’ performance deteniorates below that of
novice subjects. For example, in initial practice, targets might
be {A B C}, with {X Y 2} as distractors. After reversal, {X
Y Z} would be the targets, and {A B C} the distractors. This
reversaj is expected to produce deterioration because the stim-
uli that were previously targets attract attention away from the
previous distractors that become the new target stimuli.

In the experiments, subjects practiced a consistent mapping
task ([Shiffrin & Schneider 1977, Experiment 1]). Once per-
formance had stabilized (2100 trials), targets and distractors
were interchanged. On reversal, detection accuracy dropped
to below the level it had been at the beginning of the original
consistent mapping task (approximately SO percent), and 900
trials were needed for accuracy to return to the novice level
with targets and distractors reversed. Subsequently, gradual
re-learning occurred, and accuracy reached the previously es-
tablished level.

We simulated this reversal in a consistent mapping task. A
consistent mapping simulation was run with a set of target
stimuli and a set of distractor stimuli for 1000 epochs. At
the end of 1000 epochs, the targets and distractors were re-
versed, i.e., the prionues of the former distractors were now
consistendy incremented, and those of the former tary s were
now consistently decremented. The stmulation was run in this
reversed condition for a further 1000 epochs.

Figure 2g shows that the mean prionty levels of the onginal
targets/distractors increase/decrease over the first 1000 epachs
of consistent mapping training. When targets and distractors
are reversed atepoch 1001, the prionty levels of former targets
start dropping sharply, and those of former distractors start
increasing sharply.

We computed an accuracy measure as follows: a given sum-
ulus presentauon was considered to have evoked an accurate
response either if (i) the sumulus was a target, and evoked
a priority of above threshold, or (i) it was a distractor. and
evoked a pnonty of below threshold. The threshold prionty
level used was 9.50. Figure 2h shows the vanauon of this
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accuracy measure. At the start of initial consistent mapping
training, accuracy was approximately SO percent, and this im-
proved steadily, asymptoting by about 500 epochs of training.
When targets and distractors were reversed al epoch 1001,
accuracy dropped sharply, to below the level at the start of
the simulation, and it required approximately 100 epochs of
training to reach that level (50 percent). Beyond this point,
re-learning occurred gradually, and by epoch 1500, accuracy
had returned to the previous maximum. Thus the simulation
models the human data fairly well.

Simulation 5: Degree of consistency. Schneider and Fisk
found that consistency has a graded rather than an all-or-
none effect. In one experiment, subjects searched for one
letter (i.e., memory set size 1) in frames containing four letters
([Schneider & Fisk 1982h, Experiment 1]). Subjects were re-
quired 1o indicate the frame position in which the target had
appeared, at the end of each trial. The degree of consistency of
appearance of letters as targets or distractors varied. Thus one
letter had the consistency ratio 10:0, meaning that it appeared
as a target in 10 trials per block of trials, and never as a distrac-
tor. Three other letters had the consistency ratios 10:5, 10:10
and 10:20, respectively. Five other letters each had degree of
consistency 9:61.

Throughout the experiment, detection accuracy was highest
for the 10:0 letter, followed closely by the 10:5 condition. De-
tection accuracy was lowest for the 10:20 and 9:61 conditions,
which did not differ substantally from each other. The 10:10
letter showed intermediate detection accuracy.

In our simulation, our training set consisted of five stimuli,
which we designated A, B, C, D and E. One epoch consisted of
the appearance of each of the letters A, B, Cand D 10 umes as
atarget, and 0, 5, 10 and 20 times, respectively, as a distractor;
thus these letters corresponded to the consistency ratios 10:0,
10:5, 10:10 and 10:20, respectively. The E stimulus appeared
9 times as a target and 61 times as a distractor, corresponding
to the consistency condition 9:61. The simulation involved
presentation of this training set to a network representing the
oriority learning component of a single module. By approxi-
mately 70 epochs of training, the priority levels of the A, B, C,
D and E stimuli had seutled to 10, 8, 5, 2 and 0, respectively
(Figure 2i).

Although we have not constructed simulations correspond-
ing to the overall architecture that would be required for a sim-
ulation of the experiment described above, the pniority learning
results from the simulation with a single moduie suggest accu-
racy would be a graded function of the degree of consistency.
The overail modei would incorporate four modules V1, V2,
V3 and V4, corresponding to the visual fields in which each
of the four letters in a frame appear. The process of training
would lead 1o each of the modules having the pnionty levels
described above, which developed for a single module. A
winner-lake-all network between modules would lead to pro-
cessing of stimuli in their order of pnonty, so that attenuon
would be preferenually attracted to a higher-prionity item even
when it is not the target. Consequently, accuracy would be
greater for higher-prionty items.

Conclusions
This paper has examined the viability of proposed “prionty
learming ™ mechanisms as the basis of a computauonal model
of a number of the phenomena observed in visual scarch tasks
performed by human subjects. The simulation results that have
been presented are consistent with a fairly broad set of exper-
imental findings. We therefore conclude that priority learning
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provides a fairly good account of practice and automaucity
effects in visual search tasks.
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